Simulation of Non-Synchronous Blade Vibration of an Axial Compressor Using a Fully Coupled Fluid/Structure Interaction

Author:

Im Hong-Sik1,Zha Ge-Cheng1

Affiliation:

1. University of Miami, Coral Gables, FL

Abstract

In this paper non-synchronous vibration (NSV) of a GE axial compressor is simulated using a fully coupled fluid/strcuture interaction (FSI). Time accurate Navier-Stokes equations are solved with a system of 5 decoupled structure modal equations in a fully coupled manner. A 3rd order WENO scheme for the inviscid flux and a 2nd order central differencing for the viscous terms are used to resolve nonlinear interaction between vibrating blades and fluid flow. 1/7th annulus is used with a time shifted phase-lag (TSPL) boundary condition to reduce computational efforts. A fully conservative rotor/stator sliding boundary condition is employed to accurately capture unsteady wake propagation between the rotor and stator blades. The predicted dominant frequencies using the blade tip response signals are not harmonic to the engine order, which is the NSV. The blade vibration is torsionally coupled with highly oscillating blade pressure and is not damped out during the NSV. No resonance to the blade natural frequencies is found. The instability of tornado vortices in the vicinity of the rotor tip due to the strong interaction of incoming flow, tip vortex and tip leakage flow is the main cause of the NSV observed in this study.

Publisher

American Society of Mechanical Engineers

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3