Conjugate Heat Transfer Analysis for Gas Turbine Cooled Stator

Author:

Ho Kuo-San1,Urwiller Christopher1,Konan S. Murthy1,Liu Jong S.1,Aguilar Bruno1

Affiliation:

1. Honeywell Aerospace, Phoenix, AZ

Abstract

This paper explores the conjugate heat transfer (CHT) numerical simulation approach to calculate the metal temperature for the gas turbine cooled stator. ANSYS CFX12.1 code was selected to be the computational fluid dynamic (CFD) tool to perform the CHT simulation. The 2-equation RNG k-ε turbulence model with scalable modified wall function was employed. A full engine test with thermocouple measurement was performed and used to validate the CHT results. Metal temperatures calculated with the CHT model were compared to engine test data. The results demonstrated good agreement between test data and airfoil metal temperatures and cooling flow temperatures using the CHT model. However, the CHT calculations in the outer end wall had a discrepancy compared to the measured temperatures, which was due to the fact that the CHT model assumed an adiabatic wall as a boundary condition. This paper presents a process to calculate convection heat transfer coefficient (HTC) for cooling passages and airfoil surfaces using CHT results. This process is possible because local wall heat flux and fluid temperatures are known. This approach assists in calibrating an in-house conduction thermal model for steady state and transient thermal analyses.

Publisher

American Society of Mechanical Engineers

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Analysis of the aerothermal performance of modern commercial high-pressure turbine rotors using different levels of fidelity;Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy;2024-09-10

2. Temperature Calculation in an Uncooled Low-pressure Stage of a Heavy-duty Gas Turbine Using Conjugate Heat Transfer Analysis;International Journal of Gas Turbine, Propulsion and Power Systems;2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3