Optimization of an Industrial Area Energy Supply System With Distributed Cogeneration and Solar District Heating

Author:

Buoro Dario1,De Nardi Alberto2,Pinamonti Piero1,Reini Mauro2

Affiliation:

1. University of Udine, Udine, Italy

2. University of Trieste, Trieste, Italy

Abstract

The paper presents the optimization of an energy supply system for an industrial area. The system is mainly composed of a district heating network (DHN), of a solar thermal plant with long term heat storage, of a set of combined heat and power units (CHP) and of additional thermal/cooling energy supply machines. The thermal vector can be produced by solar thermal modules, by fossil-fuel cogenerator or by conventional boilers. The optimization algorithm is based on a Mixed Integer Linear Programming (MILP) model and it has to determine the optimal structure of the energy system and the size of the components (solar field area, heat storage volume, machines sizes, etc.). The model allows to calculate the economical and environmental benefits of the solar thermal plant compared to the cogenerative production, as well as the share of the thermal demand covered by renewable energies. The aim of the paper is to identity the optimal energy production mix able to meet the user energy demands and furthermore how the solar thermal energy integration affects the optimal energy system configuration. The average costs of the heat produced for the users have been evaluated for different optimal configurations, and it emerges that the solution including some cogenerators located in strategic production units, the district heating network, the long term heat storage and a solar plant of proper size, allows achieving the lowest cost of the heat. Thus, the integrated solution turns out to be the best from both the economical and environmental point of view.

Publisher

American Society of Mechanical Engineers

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3