Large-Eddy Simulation in an Industrial Gasturbine Combustor for NOx Prediction

Author:

Hirano Kohshi1,Nonaka Yoshiharu1,Kinoshita Yasuhiro1,Oshima Nobuyuki2,Matsuya Kyohei2

Affiliation:

1. Kawasaki Heavy Industries, Ltd., Akashi, Japan

2. Hokkaido University, Sapporo, Hokkaido, Japan

Abstract

NOx emission reduction is important for developing gas-turbine engines. Predicting the thermal profile and pollutant-emission factor by numerical simulation is effective for reducing the development costs. Here a large eddy simulation coupled with a 2-scalar flamelet approach is applied to the numerical analysis of an industrial gas-turbine combustor. The combustor of an L20A-DLE gas-turbine engine is calculated. Combustor performance under different loads is investigated. NOx production decreases with reducing load, and this tendency agrees well with the experimental results. It is said that NOx production due to a large amount of supplemental burner fuel. NOx production in the simulation is lower than in the experiment. The simulated temperature in the combustor outlet is also lower than the adiabatic temperature. Moreover, the fuel is not burned completely within the combustor region. The difference in the combustion status in a supplemental burner is investigated. For the diffusion flame, a high-temperature region is observed locally owing to the presence of a fuel-rich region. For NOx production, NOx emission reduction is expected using a burner that introduces a premixed flame. From the simulation results, we can estimate NOx production in a gas-turbine combustor. The tendencies in the differences of the loads agreed well with the experimental data, and the superiority of a premixed flame was indicated.

Publisher

American Society of Mechanical Engineers

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Large-Eddy Simulation of a Reacting Jet in Cross Flow With NOx Prediction;Journal of Engineering for Gas Turbines and Power;2016-09-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3