Effects of Reynolds Number and Tooth Front Angle on Leakage Loss and Heat Transfer Characteristics in a Rotating Labyrinth Seal

Author:

Yang Shaoyun1,Du Wei1,Luo Lei1,Wang Songtao1

Affiliation:

1. Harbin Institute of Technology School of Energy Science and Engineering, , Harbin 150001 , China

Abstract

Abstract The labyrinth seal is effective in reducing leakage losses at the rotor blade top in the turbine. This study investigates the variation in labyrinth seal performance at different rotational speeds, different Reynolds numbers, and different tooth front angles. Three Reynolds numbers (Re = 6000, 10,000, 15,000), five rotational speeds (Ta/Re = 0, 0.01, 0.04, 0.08, and 0.1), and three tooth front angles(75 deg, 90 deg, and 102.4 deg) have been introduced. The variation of leakage losses and heat transfer under different conditions is compared and a detailed analysis of the flow field and energy losses is performed. The discharge coefficient is increased slightly with increased rotational speed for the same Reynolds number. This is caused by the high rotational speed reducing the throttling loss and vortex loss. The high rotational speed enhances the heat transfer at the tip wall of the passage, and also weakens the heat transfer at the tooth cavity bottom. Additionally, the sealing capacity of the labyrinth is better at large tooth front angles, which is caused by the reduction of frictional losses on the stator and eddy current losses in the tooth cavity. The change in local pressure loss also affects the velocity distribution along the channel, which is the reason for the change in the local Nusselt number.

Funder

China Postdoctoral Science Foundation

Publisher

ASME International

Subject

Fluid Flow and Transfer Processes,General Engineering,Condensed Matter Physics,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3