Mixed Convective Heat Transfer Characteristics of Graphene Nanofluid Strengthened by Periodically Direction-Switching Electric Field

Author:

Chen Yanjun1,Du Chenhao1,Wang Zhoumiao1,He Deqiang1

Affiliation:

1. Guangxi University School of Mechanical Engineering, , Nanning 530004 , China

Abstract

Abstract Transformer-oil with low thermal conductivity and large viscosity has poor heat dissipation capability, which leads to the thermal drive failure caused by transient overload. To improve its cooling capability, this paper has proposed first the method which combined the periodically direction-switching electric field and graphene nanofluid to enhance the mixed convective heat transfer properties of transformer-oil, and analyzed the effects of switching periods, nanofluid concentration, electric field strength, heat flux, and Reynolds number on mixed convection heat transfer experimentally. The results show that the heat transfer characteristic of transformer-oil is improved up to 52% by the periodically direction-switching electric field and graphene nanofluid. As the switching period decreases, the thermal performance of the suspension is enhanced more significantly. Moreover, by analyzing the heat transfer mechanism, the periodically direction-switching electric field causes the nanoparticles to move reciprocally, repeatedly impacting and breaking the boundary layer of the heat exchange surface to enhance the perturbation, thus enhancing the heat transfer effect. Meanwhile, the predicted correlation has been proposed on the basis of influence factors, which are in good agreement with the experimental data.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Guangxi Province

Publisher

ASME International

Subject

Fluid Flow and Transfer Processes,General Engineering,Condensed Matter Physics,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3