Computational Design of a Single Heater Convective Polymerase Chain Reaction for Point-of-Care

Author:

Shu Jung Il1,Baysal Oktay1,Qian Shizhi1,Qiu Xianbo2

Affiliation:

1. Institute of Micro/Nanotechnology, Department of Mechanical and Aerospace Engineering, Old Dominion University, Norfolk, VA 23529

2. Institute of Microfluidic Chip Development in Biomedical Engineering, College of Information Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China

Abstract

Abstract Recently, researchers have started working to develop polymerase chain reaction (PCR) devices as a means for point-of-care (POC) applications. Among the requirements are portability, affordability, and performing reliably and quickly. Proposed by the present study is a process to design a convective-PCR (CPCR) device with only a single heater. It is assumed that such a design developed using microfluidics and capillary tube should help make a CPCR to be portable and more economical for POC use. One of the challenges is to achieve steadily the prerequisite three temperature zones with a single heater. It is demonstrated that this can be done with the present methodology. The underlying physics of the convection driving the CPCR function is mathematically modeled, then verified by our experimental results. In search of better designs, the following parameters that affect the CPCR performance are considered: the heater's height, and the diameter, the height, and the wall thickness of the capillary tube. A large design space consisting of design candidates is defined by combining the values within the range of each of these parameters. The results of the corresponding design cases are obtained from our mathematical model, and the performance of each case is evaluated by their deoxyribonucleic acid (DNA) doubling time. The two best CPCR performing reactors are selected and discussed. It is, therefore, demonstrated that the present methodology is capable of enhancing the CPCR reactor performance with a single heater.

Publisher

ASME International

Subject

Biomedical Engineering,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3