Affiliation:
1. Department of Mechanical Engineering, NITK, Surathkal 575025, India
Abstract
Abstract
In any parameter estimation problem, it is desirable to obtain more information in one single experiment. However, it is difficult to achieve multiple objectives in one single experiment. The work presented in this paper is the simultaneous estimation of heat transfer coefficient parameters, latent heat, and modeling error during the solidification of Al–4.5 wt %Cu alloy with the aid of Bayesian framework as an objective function that harmoniously matches the mathematical model and measurements. A 1D transient solidification problem is considered to be the mathematical model/forward model and numerically solved to obtain temperature distribution for the known boundary and initial conditions. Genetic algorithm (GA) and particle swarm optimization (PSO) are used as an inverse approach and the estimation of unknown parameters is accomplished for both pure and noisy temperature data. The use of Bayesian framework for the estimation of unknown parameters not only provides the information about the uncertainties associated with the estimates but also there is an inherent regularization term in which the inverse problem boils down to well-posed problem thereby plethora of information is extracted with less number of measurements. Finally, the results of this work open up new prospects for the solidification problem so as to obtain a feasible solution with the present approach.
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献