Particle-Based Modeling of Electron–Phonon Interactions

Author:

Sabatti Flavio F. M.1,Goodnick Stephen M.1,Saraniti Marco1

Affiliation:

1. School of Electrical, Computer and Energy Engineering, Arizona State University, P.O. Box 875706, Tempe, AZ 85287-5706

Abstract

Abstract An important challenge in particle-based modeling of electron–phonon interactions is the large difference in the statistical weight of the particles in the two simulated populations. Each change in the state of a simulated phonon during scattering is statistically representative of an interaction with multiple simulated electrons, which results in a large numerical burden accurately represent both populations. We developed two stochastic approaches to mitigate this numerical problem. The first approach is based on Poisson modeling of the scattering processes coupled with a thinning algorithm, which works effectively at steady-state, but it is prone to statistical errors in the energy during the transient regime. The second approach is based on point process (PP) modeling of the scattering, allowing stochastical book-keeping, which corrects the energy error. Here, we present a mathematical description of the problem and the two stochastic approaches along with the numerical results we obtained for the synchronous transient simulation of the electron and phonon populations.

Funder

Air Force Office of Scientific Research

Air Force Research Laboratory

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Reference51 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3