Computational Fluid Dynamics Analysis of the Flow Force Exerted on the Disk of a Direct-Operated Pressure Safety Valve in Energy System

Author:

Zong Chaoyong1,Zheng Fengjie1,Chen Dianjing2,Dempster William3,Song Xueguan1

Affiliation:

1. School of Mechanical Engineering, Dalian University of Technology, Dalian 116023, China

2. National Engineering Research Center for Special Pump and Valve, Beijing 9200-11, China

3. Department of Mechanical and Aerospace Engineering, University of Strathclyde, Glasgow G1 1XJ, UK

Abstract

Abstract The flow force acting on a valve disk plays an important role in the overall performance of pressure safety valves (PSVs). To quantify the disk force, computational fluid dynamics (CFD) methods have been widely implemented. In this paper, the capability of CFD models, and the identification of the most suitable turbulence models' geometry modeling and mesh requirements have been assessed to establish the accuracy of CFD models for disk force prediction. For validation purposes, a PSV disk force measuring rig was designed and constructed to obtain the steady-state flow forces exerted on the valve disk at different valve openings. The CFD model assessment is achieved by comparing the simulation results to experimental measurements; this is achieved in two stages. Stage 1 investigates the use of Reynolds averaged Navier–Stokes (RANS)-based turbulence models where two-dimensional (2D) simulations are performed with five turbulence models. The results indicate that a variety of force results are produced by different turbulence models, among which the shear stress transport (SST) k–ω was found to have the best performance. Stage 2 investigates meshing and the use of symmetry and geometry simplifications; 2D, 1/8 three-dimensional (3D) and 1/2 3D mesh models are examined. The results indicate that the 1/8 3D mesh model is the optimal choice, owing to its higher accuracy and reasonable grid scale. The studies performed in this paper extend the knowledge of compressible flow force prediction, and should facilitate the design or optimization of PSVs.

Funder

The National Natural Science Foundation

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Safety, Risk, Reliability and Quality

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3