Particle Image Velocimetry and Computational Fluid Dynamics Analysis of Fuel Cell Manifold

Author:

Lebæk Jesper1,Andreasen Marcin Blazniak1,Andresen Henrik Assenholm2,Bang Mads2,Kær Søren Knudsen2

Affiliation:

1. Danish Technological Institute, Kongsvang Allé 29, 8000 Aarhus C, Denmark

2. Institute of Energy Technology, Aalborg University, Pontoppidansstræde 101, DK-9220 Aalborg Ø, Denmark

Abstract

The inlet effect on the manifold flow in a fuel cell stack was investigated by means of numerical methods (computational fluid dynamics) and experimental methods (particle image velocimetry). At a simulated high current density situation the flow field was mapped on a 70 cell simulated cathode manifold. Three different inlet configurations were tested: plug flow, circular inlet, and a diffuser inlet. A very distinct jet was formed in the manifold, when using the circular inlet configuration, which was confirmed both experimentally and numerically. This jet was found to be an asymmetric confined jet, known as the symmetry-breaking bifurcation phenomenon, and it is believed to cause a significant maldistribution of the stack flow distribution. The investigated diffuser design proved to generate a much smoother transition from the pipe flow to the manifold flow with a subsequent better flow distribution. A method was found in the literature to probe if there is a risk of jet asymmetry; it is however recommended by the author to implement a diffuser design, as this will generate better stack flow distribution and less head loss. Generally, the numerical and experimental results were found in to be good agreement, however, a detailed investigation revealed some difference in the results.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3