Theoretical Modeling of the Vapor Cavitation in Dynamically Loaded Journal Bearings

Author:

Brewe D. E.1

Affiliation:

1. U.S. Army Aviation Research and Technology Activity (AVSCOM), Lewis Research Center, Cleveland, Ohio

Abstract

A theoretical investigation is made of the evolution of a vapor bubble for a submerged journal bearing under dynamically loaded conditions. The solution to the Reynolds equation is determined numerically using a control volume method (Elrod algorithm). This method conserves mass throughout the computational domain including the liquid-vapor interface which may or may not be in motion relative to the minimum film line. An ADI (Alternating Direction Implicit) method is used to effect the time march. Excellent agreement was found with the experimental work of Jakobsson and Floberg for stationary cavitation. Predictions of bubble life for nonstationary cavitation compare reasonably well with that measured by Jacobson and Hamrock using high-speed photography. A comparison study was performed to determine some of the consequences of applying a nonconservative theory to a dynamic problem. A complete dynamic cycle of a journal whirling in a circular path was chosen for the basis of comparison. Significant differences were observed in the load components near the end of the cycle. In each case, onset of cavitation was observed followed by bubble growth and subsequent collapse. More complete details of this phenomena are illustrated with the use of perspective graphic plots depicting the associated pressure distribution and region of cavitation with position and motion of the journal within the housing.

Publisher

ASME International

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering,Mechanics of Materials

Cited by 118 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3