Empirical Potential Functions for Driving Bioinspired Joint Design

Author:

Bender Matthew1,George Aishwarya2,Powell Nathan1,Kurdila Andrew3,Müller Rolf45

Affiliation:

1. Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA 24060 e-mail:

2. Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA 24060 e-mail:

3. W. Martin Johnson Professor Fellow ASME Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA 24060 e-mail:

4. Professor Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA 24060;

5. SDU-VT International Lab, Shandong University, Jinan, Shandong 250100, China e-mail:

Abstract

Bioinspired design of robotic systems can offer many potential advantages in comparison to traditional architectures including improved adaptability, maneuverability, or efficiency. Substantial progress has been made in the design and fabrication of bioinspired systems. While many of these systems are bioinspired at a system architecture level, the design of linkage connections often assumes that motion is well approximated by ideal joints subject to designer-specified box constraints. However, such constraints can allow a robot to achieve unnatural and potentially unstable configurations. In contrast, this paper develops a methodology, which identifies the set of admissible configurations from experimental observations and optimizes a compliant structure around the joint such that motions evolve on or close to the observed configuration set. This approach formulates an analytical-empirical (AE) potential energy field, which “pushes” system trajectories toward the set of observations. Then, the strain energy of a compliant structure is optimized to approximate this energy field. While our approach requires that kinematics of a joint be specified by a designer, the optimized compliant structure enforces constraints on joint motion without requiring an explicit definition of box-constraints. To validate our approach, we construct a single degree-of-freedom elbow joint, which closely matches the AE and optimal potential energy functions and admissible motions remain within the observation set.

Publisher

ASME International

Subject

Computer Science Applications,Mechanical Engineering,Instrumentation,Information Systems,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3