Experimental Study of Linear and Radial Two-Phase Heat Transport Devices Driven by Electrohydrodynamic Conduction Pumping

Author:

Pearson Matthew R.1,Seyed-Yagoobi Jamal2

Affiliation:

1. Thermal Fluid Sciences Department, United Technologies Research Center, East Hartford, CT 06108 e-mail:

2. Department of Mechanical Engineering, Worcester Polytechnic Institute, Worcester, MA 01609 e-mail:

Abstract

Heat pipes are well known as simple and effective heat transport devices, utilizing two-phase flow and the capillary phenomenon to remove heat. However, the generation of capillary pressure requires a wicking structure and the overall heat transport capacity of the heat pipe is generally limited by the amount of capillary pressure generation that the wicking structure can achieve. Therefore, to increase the heat transport capacity, the capillary phenomenon must be either augmented or replaced by some other pumping technique. Electrohydrodynamic (EHD) conduction pumping can be readily used to pump a thin film of a dielectric liquid along a surface, using electrodes that are embedded into the surface. In this study, two two-phase heat transport devices are created. The first device transports the heat in a linear direction. The second device transports the heat in a radial direction from a central heat source. The radial pumping configuration provides several advantages. Most notably, the heat source is wetted with fresh liquid from all directions, thereby reducing the amount of distance that must be travelled by the working fluid. The power required to operate the EHD conduction pumps is a trivial amount relative to the heat that is transported.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3