Energy-Based Strength Theory for Soft Elastic Membranes

Author:

Pourmodheji Reza1,Qu Shaoxing2,Yu Honghui1

Affiliation:

1. Department of Mechanical Engineering, The City College of New York, New York, NY 10031 e-mail:

2. Department of Engineering Mechanics, State Key Laboratory of Fluid Power and Mechatronic Systems, Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Zhejiang University, Hangzhou 310027, China e-mail:

Abstract

In the previous studies by the authors and others, it was demonstrated that there are two possible defect growth modes and a characteristic material length for any soft material. For a pre-existing defect smaller than the material characteristic length, the energy is dissipated all around the defect as it grows and the critical load for the growth is independent of the defect size. For defects larger than the characteristic length, the growth is by cracking and the energy is dissipated along a plane. Thus, the critical load for the growth is size dependent and can be predicted by fracture mechanics. In this study, we apply the same energy-based argument to the failure of thin membranes, with the focus on the first growth mode that gives the maximum critical load. We assume that strain localization due to damage is the precursor to rupture, and hence, we model the corresponding zone as a through-thickness hole, with its size smaller than the material characteristic length. The defect grows when the elastic energy relaxed by the growth is enough to provide the energy needed for internal microstructure changes. This leads us to the size-independent failure conditions for membranes under the biaxial load. The conditions are expressed in terms of either two principal stretches or two principal stresses for two different types of materials. For verification, we test the theory using the published experimental data on natural and styrene-butadiene rubber. By using the experimental data from equal biaxial loading, we predict the critical principal stretch ratios and critical stresses for different biaxialities. The predictions agree well with the experimental results.

Funder

National Natural Science Foundation of China

Research Foundation of The City University of New York

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference74 articles.

1. Internal Rupture of Bonded Rubber Cylinders in Tension;Gent;Proc. Roy. Soc. Lond. Math. Phys. Sci.,1959

2. Cavitation in Rubber: A Cautionary Tale;Gent;Rubber Chem. Technol.,1990

3. Bubble Formation in Vulcanized Rubbers;Denecour;J Polym. Sci. B Polym. Phys.,1968

4. Cavity Formation on Elongation in Filled Elastomers;Sekhar;J. Appl. Polym. Sci.,1971

5. Nucleation and Growth of Gas Bubbles in Elastomers;Gent;J. Appl. Phys.,1969

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3