Heat Transfer Prediction of In-Service Welding in a Forced Flow of Fluid

Author:

Lindström Per R. M.1

Affiliation:

1. Department of Shipping and Marine Technology, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden

Abstract

An algorithm for heat transfer prediction of in-service welding operations in a forced flow of fluid is presented. The algorithm presented is derived from Rosenthal’s 3D heat flow equation and boundary layer approximations. This was possible by the introduction of an apparent thermal conductivity kPL, which is a function of the boundary layer’s heat transfer coefficient αf and the base material’s thickness δ. This implies that a weld cooling time ΔtT1/T2 in a forced flow of fluid can now be calculated by an ordinary engineering calculator and thus enabling suitable welding parameters to be determined. The magnitude of kPL(αf,δ) was established by regression analysis of results from a parametric finite element analysis series of a total number of 112 numerical simulations. Furthermore, the result of the regression analysis was validated and verified by a welding experiment series accomplished on an in-house designed and constructed in-service welding rig. The principle design of the welding rig as well as its instrumentation, a PC based Data Acquisition system, is described. In addition, a method to measure the weld metals cooling time ΔtT1/T2 by means of thermocouple elements is described. Finally, the algorithm presented in this study proved feasible for industrial in-service welding operations of fine-grained Carbon and Carbon–Manganese steels with a maximum Carbon Equivalent (IIW) (CE) of 0.32.

Publisher

ASME International

Subject

Mechanical Engineering,Ocean Engineering

Reference20 articles.

1. The Theory of Moving Sources of Heat and Its Applications to Metal Treatments;Rosenthal;Trans. ASME

2. SSAB Oxelösund AB, 1999, WeldCalc™ Version 1.0, Oxelösund, Sweden.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3