An Offshore Risk Analysis Method Using Fuzzy Bayesian Network

Author:

Ren J.1,Jenkinson I.1,Wang J.1,Xu D. L.2,Yang J. B.2

Affiliation:

1. School of Engineering, Technology and Maritime Operations, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, UK

2. Manchester Business School, University of Manchester, Manchester M60 1QD, UK

Abstract

The operation of an offshore installation is associated with a high level of uncertainty because it usually operates in a dynamic environment in which technical and human and organizational malfunctions may cause possible accidents. This paper proposes a fuzzy Bayesian network (FBN) approach to model causal relationships among risk factors, which may cause possible accidents in offshore operations. The FBN model explicitly represents cause-and-effect assumptions between offshore engineering system variables that may be obscured under other modeling approaches like fuzzy reasoning and Monte Carlo risk analysis. The flexibility of the method allows for multiple forms of information to be used to quantify model relationships, including formally assessed expert opinions when quantitative data are lacking in early design stages with a high level of innovation or when only qualitative or vague statements can be made. The model is also a modular representation of uncertain knowledge due to randomness and vagueness. This makes the risk and safety analysis of offshore engineering systems more functional and easier in many assessment contexts. A case study of the collision risk between a floating production, storage and offloading unit and the authorized vessels due to human errors during operation is used to illustrate the application of the proposed model.

Publisher

ASME International

Subject

Mechanical Engineering,Ocean Engineering

Cited by 127 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3