A Novel Way to Control Wall Temperature Distribution by Grading Blowing Rate

Author:

Zheng Zihao1,Bai Xiaohui2,Nakayama Akira34

Affiliation:

1. School of Chemical and Environmental Engineering, Wuhan Polytechnic University , Wuhan, Hubei 43002, China

2. School of Power and Energy, Northwestern Polytechnical University , Xi'an, Shaanxi 710072, China

3. School of Power and Energy, Northwestern Polytechnical University , Xi'an, Shaanxi 710072, China ; , Hamamatsu, Shizuoka 432-8561, Japan

4. Faculty of Engineering, Shizuoka University , Xi'an, Shaanxi 710072, China ; , Hamamatsu, Shizuoka 432-8561, Japan

Abstract

Abstract The Graetz problem in a transpiration-cooled channel was analytically attacked so as to explore the developing temperature field due to a sudden change in wall temperature of the channel subject to an arbitrary distribution of the local mass flux over the porous wall. Analytical expressions for the developments of the thermal boundary layer thickness, wall temperature, and Nusselt number were obtained for the thermal entrance region, assuming hydrodynamically forced convective flow in a channel with a locally variable blowing mass flux. When the blowing mass flux is kept constant over the wall surface, the cooling by the coolant is less effective near the entrance, thus, exposing to danger of thermal damage. This study reveals that the blowing mass flux graded inversely proportional to one-third power of the axial distance is quite effective to keep the wall temperature uniform. Numerical calculations based on finite volume method were also carried out to verify the analysis. The findings from this study can be applied to possible thermal managements of heat generating stacks such as in EV batteries and PEMFC, in which temperature uniformity is essential for product longevity.

Publisher

ASME International

Reference25 articles.

1. Ueber Die Wärmeleitungsfähigkeit Von Flüssigkeiten;Annu. Rev. Phys. Chem.,1885

2. Circular Duct

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3