Photodegradation of Molecular Iodine on SiO2 Particles: Influence of Temperature and Relative Humidity

Author:

Figueiredo A.1,Strekowski R. S.2,Bosland L.3,Durand A.2,Wortham H.2

Affiliation:

1. Aix Marseille University, CNRS, LCE, Marseille 13007, France; Institut de Radioprotection et de Sûreté Nucléaire, PSN-RES/SAG/LETR, Cadarache, France

2. Aix Marseille University, CNRS, LCE, Marseille 13007, France

3. Institut de Radioprotection et de Sûreté Nucléaire, PSN-RES/SAG/LETR, Cadarache, France

Abstract

Abstract A molecular derivatization method followed by gas chromatographic separation coupled with mass spectrometric detection was used to study photodegradation of molecular I2 adsorbed on solid SiO2 particles. The heterogeneous photodegradation of I2 was studied as a function of temperature and relative humidity in synthetic air to better understand its environmental fate. Two sets of experiments were carried out. In the first set of experiments, the temperature was T = (298 ± 1) K and relative humidity was varied from ≤ 2% to 75%RH under given experimental conditions. In the second set of experiments, the relative humidity within the Pyrex bulb was 40%RH and the temperature was varied from 283 ± 1 ≤ T (K) ≤ 323 ± 1. The obtained results show a considerably enhanced atmospheric lifetime of molecular iodine adsorbed on solid media that does not depend on relative humidity of the environment. The obtained results show that the rate constant for the photolysis of molecular iodine adsorbed on model SiO2 particles depends on temperature and is reported to be J (T)=(1.24 ± 1.4)×10−2×exp[(1482±345)/T]/s over the measured temperature range. The heterogeneous atmospheric residence time () of I2 adsorbed on solid media is calculated to range from 2 to 4.1 h. The experimentally obtained heterogeneous lifetime of I2 is shown to be considerably longer than its destruction by its principal atmospheric sink, photolysis. The observed enhanced atmospheric lifetime of I2 on heterogeneous media will likely have direct consequences on the atmospheric transport of I2 that influences the toxicity or the oxidative capacity of the atmosphere.

Publisher

ASME International

Subject

Nuclear Energy and Engineering,Radiation

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3