High-Fidelity Modelling of Floating Offshore Wind Turbine Platforms

Author:

Burmester Simon1,Vaz Guilherme2,el Moctar Ould1,Gueydon Sebastien3,Koop Arjen3,Wang Yu4,Chen H. C.4

Affiliation:

1. University of Duisburg-Essen, Duisburg, Germany

2. WavEC-Offshore Renewables, Portugal

3. MARIN, Wageningen, Netherlands

4. Texas A&M University, College Station, TX

Abstract

Abstract There are already several examples of commercially operating floating offshore wind turbines (FOWTs) delivering electricity to the grid. These devices operate usually in harsh environments due to high waves, strong winds and currents. Guaranteeing the survivability of these complex and expensive constructions is crucial but not straightforward, and this may be partially controlled by the associated hydrodynamic damping. FOWT structures are still designed and analysed using potential-flow and empirical tools. However, nowadays, almost all fields of maritime problems are seeing an increased use of higher-fidelity viscous-flow tools (CFD, or Computational Fluid Dynamics), due to its increased modelling accuracy. Therefore, in this work, a FOWT is analysed in detail using CFD with emphasis on the hydrodynamic damping. This damping arises due to wave radiation, skin friction, eddy making and lift, and drag of the mooring lines. The CFD associated turbulence model influences largely the eddy making and skin friction components of the damping. Moorings are also a critical issue when assessing the damping of a floater. Catenary moorings are towed along with the motion of the floater and induce loads (drag and inertia) on the lines, effects which cannot be represented by static or quasi-static approaches. And numerical errors, often neglected or not quantified, can influence all the previous aspects and the final accurate prediction of the structure damping. In this paper, all these aspects are investigated by performing CFD decay tests, and their contribution quantified in terms of linear and quadratic damping components. The following issues were found to have a major contribution to the hydrodynamic damping and consequently on the motions of the platform: numerical discretisation (temporal and spatial), Reynolds number, free surface, turbulence and accurate mooring modelling.

Publisher

American Society of Mechanical Engineers

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3