Statistical Determination of Bit-Rock Interaction and Drill String Mechanics for Automatic Drilling Optimization

Author:

Ambrus Adrian1,Daireaux Benoît1,Carlsen Liv A.1,Mihai Rodica G.1,Karimi Balov Mohsen2,Bergerud Ronny3

Affiliation:

1. NORCE, Bergen, Norway

2. Equinor, Stavanger, Norway

3. Sekal, Sandnes, Norway

Abstract

Abstract The ability to predict the response of a drill bit to the topside axial and rotational velocities of the drill-string is a prerequisite for any system aimed at automatically controlling the drilling parameters to optimize the rate of penetration and the overall quality of the well construction process. When drilling with a Polycrystalline Diamond Compact (PDC) bit, even the steady-state response can exhibit complex behavior, characterized by the presence of (at least) three different regimes whose range and parameters depend upon the bit characteristics and the mechanical properties of the formations being drilled. Transient effects significantly complicate the situation, especially when vibrations (axial, rotational or lateral) disturb the drilling process. Often, the root cause of these vibrations lies in the bit-rock interaction itself, while the drill string, through its elasticity and interaction with the borehole wall, may amplify or attenuate these vibrations. Therefore, continuous calibration of the drill string and bit-rock parameters from available surface and downhole measurements is critical for any automated control system relying on dynamic models of the drilling process. We present a calibration procedure whose goal is two-fold: first, to identify the time-varying parameters involved in the bit-rock interaction, and second, to provide a low-order, transfer function model approximation of the drill string axial and rotational dynamics. Our approach is based on particle filter techniques and a refined instrumental variable method for transfer function model estimation, and allows for real-time estimation of the various model parameters. We illustrate its behavior against recorded drilling data, where the proposed methods are shown to capture the different dynamics in place. We explain, in addition, how the calibrated drill string and bit-rock interaction models can be integrated in a framework to identify drilling parameter regions prone to axial or rotational vibrations.

Publisher

American Society of Mechanical Engineers

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3