An Optimized Thrust Allocation Algorithm for Dynamic Positioning System Based on RBF Neural Network

Author:

Tang Ziying1,Wang Lei1,Yi Fan1,He Huacheng1

Affiliation:

1. Shanghai Jiao Tong University, Shanghai, China

Abstract

Abstract The thrust allocation of Dynamic Positioning System (DPS) equipped with multiple thrusters is usually formulated as an optimization problem. Hydrodynamic interaction effects such as thruster-thruster interaction results in thrust loss. This interaction is generally avoided by defining forbidden zones for some azimuth angles. However, it leads to a higher power consumption and stuck thrust angles. For the purpose of improving the traditional Forbidden Zone (FZ) method, this paper proposes an optimized thrust allocation algorithm based on Radial Basis Function (RBF) neural network and Sequential Quadratic Programming (SQP) algorithm, named RBF-SQP. The thrust coefficient is introduced to express the thrust loss which is then incorporated into the mathematical model to remove forbidden zones. Specifically, the RBF neural network is constructed to approximate the thrust efficiency function, and the SQP algorithm is selected to solve the nonlinear optimization problem. The training dataset of RBF neural network is obtained from the model test of thrust-thrust interaction. Numerical simulations for the dynamic positioning of a semi-submersible platform are conducted under typical operating conditions. The simulation results demonstrate that the demanded forces can be correctly distributed among available thrusters. Compared with the traditional methods, the proposed thrust allocation algorithm can achieve a lower power consumption. Moreover, the advantages of considering hydrodynamic interaction effects and utilizing a neural network for function fitting are also highlighted, indicating a practical application prospect of the optimized algorithm.

Publisher

American Society of Mechanical Engineers

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Design of Constraints for a Neural Network based Thrust Allocator for Dynamic Ship Positioning;IECON 2023- 49th Annual Conference of the IEEE Industrial Electronics Society;2023-10-16

2. Dynamic Response Characteristics of the Hydraulic Rotary System of an Azimuth Thruster for a Dynamic Positioning Vessel;Journal of Marine Science and Engineering;2023-02-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3