SPIRE: Flexible Riser Condition Monitoring System Applied to Pre-Salt Fields With High CO2

Author:

Brandão M. O.1,Lima J.1,Almeida E.1,Borges O.1,McCarthy J.1,Nott P.1,McNab J.1

Affiliation:

1. Baker Hughes

Abstract

Abstract The development of Brazil’s Offshore fields has been performed using flexible pipes because this pipe technology offers significantly increased flexibility, enabling the movement of pipes between wells and reducing lead time to bring a well onstream as compared to rigid pipe solutions. In addition, the decision of where exactly to drill development wells can be delayed, thus making the drilling campaigns easier, cheaper and faster [1]. With the increased activity in Pre-Salt, some challenges to flexible pipes were uncovered and needed to be addressed, notably oil composition and corrosive agents, e.g. H2S, and, specifically for the case of this paper, CO2. At high pressures, such as found in pre-Salt fields, these contaminants create new Stress Corrosion Cracking (SCC) failure modes and several mitigation measures have been adopted to overcome them, focused either on the installed fleet or on the next generation of pipes to be delivered. SCC is a condition that induces failure in the pipes’ metallic layers, but it needs three elements to occur: water, tensile stress exceeding a critical level and a susceptible material. If one of these three elements is suppressed, the phenomena does not to happen. This paper will cover and present a technology developed to detect the annulus water condition — dry or flooded — and thereby allow a correct integrity management strategy to be adopted. The technology is based on an embedded sensing system together with topside equipment to read the status. The use of such a system is important for the next generation of flexible pipes as it will allow better management of the fleet, with the required measurements performed from the production unit without the need of any support vessel and hence at a reduced cost.

Publisher

American Society of Mechanical Engineers

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Shielding effects in annulus composition analysis of flexible pipes;Rio Oil and Gas Expo and Conference;2022-09-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3