Reverse Pupillary Block Slows Iris Contour Recovery From Corneoscleral Indentation

Author:

Amini Rouzbeh1,Barocas Victor H.1

Affiliation:

1. Department of Biomedical Engineering, University of Minnesota, 7-105 Hasselmo Hall, 312 Church Street SE, Minneapolis, MN 55455

Abstract

Corneoscleral indentation changes the iris contour and alters the angle between the iris and cornea. Although this effect has long been observed, the mechanism by which it occurs remains poorly understood. Previous theoretical research has shown that corneoscleral indentation can deform the eye globe and consequently rotate the iris root. In this work, we studied the fluid-structure interaction between the iris and aqueous humor, driven by iris root rotation. The iris root rotation obtained from our previous whole-globe model was used as a boundary condition for a fluid-structure interaction finite element model of the anterior eye. We studied the effect of two parameters-rotation angle and indentation speed-on the iris contour and aqueous humor dynamics. We found that posterior rotation of the iris root caused posterior bowing of the iris. After the iris root was returned to its original orientation, the aqueous humor was trapped in the anterior chamber because the iris tip pinned against the lens (reverse pupillary block). After 0.5–2 min of simulation, aqueous humor secretion into the posterior chamber and outflow from the anterior chamber allowed the system to return to its original steady state flow condition. The faster or farther the iris root rotated, the longer it took to return to steady state. Reverse pupillary block following corneoscleral indentation is a possible explanation for the clinical observation that prevention of blinking causes the iris to drift forward.

Publisher

ASME International

Subject

Physiology (medical),Biomedical Engineering

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3