Maxillary Cutting Guide for Executing a Simulated Osteotomy and Removing the Bony Interference During Orthognathic Surgery

Author:

Kang Sang-Hoon1,Kim Hak-Jin2,Park Ha-Won3,Lee Sang-Hwy4

Affiliation:

1. Department of Oral and Maxillofacial Surgery, National Health Insurance Service Ilsan Hospital, 100 Ilsan-ro, Ilsan-donggu, Goyang, Gyeonggi-do 410-719, South Korea e-mail:

2. Department of Oral and Maxillofacial Surgery, Yongin Severance Hospital, 23 Yongmunno, Yongin, Gyeonggi-do 449-930, South Korea e-mail:

3. Department of Biomedical Engineering, AMKorea, Anyang, Gyeonggi-do 431-804, South Korea

4. Professor Department of Oral and Maxillofacial Surgery, College of Dentistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-752, South Korea e-mail:

Abstract

The results of surgical simulation need to be transferred to the operation table with precision and confidence. We want to introduce a three-dimensional (3D)-printed maxillary cutting guide to perform the simulation-based maxillary osteotomy, interference removal, and the device guide for maxillary orthognathic surgery. The orthognathic simulation is performed with a horizontal osteotomy line and the maxillary segmental movement on a computed tomography (CT)-based 3D model. The maxillary cutting guide is designed as a band-shaped template encompassing the osteotomy line, bone interference area, and guiding holes. The design is exported to a 3D printer and the cutting guide is printed with biocompatible resin materials. The cutting guide was applied to 45 orthognathic surgeries. It could assist the easy and accurate osteotomy as planned and eliminate the repeated empirical checks of the premature interference site while preventing excessive bone reduction. This device guides the surgeon to place the osteotomy line, predict and remove the bony interferences, and place holes for additional surgical devices for maxillary orthognathic surgery.

Publisher

ASME International

Subject

Biomedical Engineering,Medicine (miscellaneous)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3