Computation of Discrete-Hole Film Cooling: A Hydrodynamic Study

Author:

Berhe Mulugeta K.1,Patankar Suhas V.1

Affiliation:

1. University of Minnesota, Minneapolis, MN

Abstract

Hydrodynamic plots are presented from a numerical study conducted on a three dimensional film cooling geometry that includes the main flow, injection hole, and the plenum. The fully elliptic Navier-Stokes equations were solved over a body fitted grid using the control volume method. Turbulence closure was achieved using the k-ε turbulence model. The results presented include contour plots of the resultant velocity at hole exit, as well as streamwise mean velocity and turbulence intensity contours at several cross-stream planes. Computations were performed for blowing ratios of 0.5 and 1.0, and a density ratio of 2. The injection hole was 12.7 mm in diameter, 3.5 diameters long, and inclined at 35° to the streamwise direction. Results obtained from this analysis are compared with the available experimental results. Whereas the overall agreement is good, important differences were found. Compared to the experimental jet, the computed jet showed (a) a larger vertical velocity at hole exit, (b) a smaller lateral spread in the downstream region, especially at low blowing ratios.

Publisher

American Society of Mechanical Engineers

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3