Mechanical Stimulation Mediates Gene Expression in MC3T3 Osteoblastic Cells Differently in 2D and 3D Environments

Author:

Barron Matthew J.1,Tsai Chung-Jui2,Donahue Seth W.1

Affiliation:

1. Department of Biomedical Engineering, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49849

2. Department of Genetics and School of Forestry and Natural Resources, University of Georgia, 111 Riverbend Road, Athens, GA 30602

Abstract

Successful bone tissue engineering requires the understanding of cellular activity in three-dimensional (3D) architectures and how it compares to two-dimensional (2D) architecture. We developed a perfusion culture system that utilizes fluid flow to mechanically load a cell-seeded 3D scaffold. This study compared the gene expression of osteoblastic cells in 2D and 3D cultures, and the effects of mechanical loading on gene expression in 2D and 3D cultures. MC3T3-E1 osteoblastlike cells were seeded onto 2D glass slides and 3D calcium phosphate scaffolds and cultured statically or mechanically loaded with fluid flow. Gene expression of OPN and FGF-2 was upregulated at 24 h and 48 h in 3D compared with 2D static cultures, while collagen 1 gene expression was downregulated. In addition, while flow increased OPN in 2D culture at 48 h, it decreased both OPN and FGF-2 in 3D culture. In conclusion, gene expression is different between 2D and 3D osteoblast cultures under static conditions. Additionally, osteoblasts respond to shear stress differently in 2D and 3D cultures. Our results highlight the importance of 3D mechanotransduction studies for bone tissue engineering applications.

Publisher

ASME International

Subject

Physiology (medical),Biomedical Engineering

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3