Elastoplastic Stress Analysis and Residual Stresses in Cylindrical Bar Under Combined Bending and Torsion

Author:

Kobelev V.1

Affiliation:

1. Department of Mechanical Engineering, Faculty IV, University of Siegen, Paul-Bonatz-Str. 9-11, D-57076, Siegen, Germany

Abstract

The excessive stresses during the coiling of helical springs could lead to breakage of the rod. Moreover, the high level of residual stress in the formed helical spring reduces considerably its fatigue life. For the practical estimation of residual and coiling stresses in the helical springs the analytical formulas are necessary. In this paper the analytical solution of the problem of elastic–plastic deformation of cylindrical bar under combined bending and torsion moments is found for a special nonlinear stress–strain law. The obtained solution allows the analysis of the active stresses during the combined bending and twist. Moreover, the residual stresses in the bar after springback are also derived in closed analytical form. The results of this analysis are applied to the actual engineering problem of determination of stresses during the manufacturing of helical coiled springs. A practically important example, describing the manufacturing of helical coiled spring is worked out to illustrate the simplicity achieved in determining the plasticization process and residual stresses. The obtained results match the reported measured values. The developed method does not require numerical simulation and is perfectly suited for programming of coiling machines, estimation of loads during manufacturing of cold-wounded helical springs and for dimensioning and wear calculation of coiling tools.

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Control and Systems Engineering

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3