Thermodynamic Optimization of a Combined Cooling and Power System Utilizing Industrial Waste Heat

Author:

Yin Ge1,Yuan Tianhao2,Li Deming22,Zhang Chengbin2,Deng Zilong2

Affiliation:

1. China Energy Science and Technology, Research Institute Co., Ltd State Key Laboratory of Low-Carbon Smart Coal-Fired Power Generation and Ultra-Clean Emission, , Nanjing 210023 , China

2. Southeast University School of Energy and Environment, , Nanjing 210096 , China

Abstract

Abstract Cascade utilization is the most promising solution for efficient recovery of industrial waste heat. In this paper, a combined cooling and power (CCP) system including an organic Rankine cycle (ORC) and an absorption refrigeration cycle (ARC) is proposed, aiming to realize the cascade utilization of efficient utilization of low-grade flue gas. With the objective of maximizing the equivalent specific net power output, a particle swarm optimization (PSO) algorithm is employed to optimize the operation parameters of the proposed system and the composition and mass fractions of zeotropic working fluid. The results indicate that the proposed system can realize efficient cascade utilization for flue gas waste heat energy. The optimized proposed system achieves a specific net power output of 6.09 kW/kgFG of a specific refrigeration capacity of 27.65 kW/kgFG. Additionally, heat exchanger exergy losses account for 73.7% and 53.6% of the total exergy losses in the ORC and ABR subsystems, respectively. Therefore, optimizing the heat exchanger equipment is a feasible approach to further enhance the thermodynamic performance of the proposed system.

Funder

National Natural Science Foundation of China

Publisher

ASME International

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3