Interplay Between Eutectic and Dendritic Growths Dominated by Si Content for Nb-Si-Ti Alloys Via Rapid Solidification

Author:

Guo Yueling1,Jia Lina2,He Junyang3,Zhang Siyuan3,Li Zhiming3,Zhang Hu2

Affiliation:

1. School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China

2. Frontier Institute of Science and Technology Innovation, Beihang University, Beijing 100191, China

3. Max-Planck-Institut für Eisenforschung, Max-Planck-Straße 1, Düsseldorf 40237, Germany

Abstract

Abstract Rapid solidification techniques such as electron beam additive manufacturing are considered as promising pathways for manufacturing Nb-Si-based alloys for ultra-high-temperature applications. Here, we investigate the microstructure diversity of a series of Nb-Si-Ti alloys via electron beam surface melting (EBSM) to reveal their rapid solidification behaviors. Results show that the microstructural transition from coupled to divorced Nbss/Nb3Si eutectics can be triggered by increasing Si content. The formation of fully lamellar eutectics, evidenced by scanning transmission electron microscopy and atom probe tomography (APT), is achieved in the EBSM-processed Nb18Si20Ti alloy (at%), in contrast to the hypereutectic microstructures in arc-melted counterparts. The dendritic microstructures containing divorced eutectics are generated with a higher content of Si during rapid solidification. The transition from faceted to non-faceted growth of intermetallic Nb3Si occurs with the formation of primary Nb3Si dendrites. The interplay between eutectic and dendritic growths of silicides is discussed to provide insights for future alloy design and manufacture.

Funder

China Postdoctoral Science Foundation

National Natural Science Foundation of China

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Control and Systems Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3