Complete Bandgap in Three-Dimensional Holey Phononic Crystals With Resonators

Author:

Wang Yan-Feng,Wang Yue-Sheng1

Affiliation:

1. Institute of Engineering Mechanics, Beijing Jiaotong University, Beijing 100044, China e-mail:

Abstract

In this paper, the bandgap properties of three-dimensional holey phononic crystals with resonators are investigated by using the finite element method. The resonators are periodically arranged cubic lumps in the cubic holes connected to the matrix by narrow connectors. The influence of the geometry parameters of the resonators on the bandgap is discussed. In contrast to a system with cubic or spherical holes, which has no bandgaps, systems with resonators can exhibit complete bandgaps. The bandgaps are significantly dependent upon the geometry of the resonators. By the careful design of the shape and size of the resonator, a bandgap that is lower by an order of magnitude than the Bragg bandgap can be obtained. The vibration modes at the band edges of the lowest bandgaps are analyzed in order to understand the mechanism of the bandgap generation. It is found that the emergence of the bandgap is due to the local resonance of the resonators. Spring-mass models or spring-pendulum models are developed in order to evaluate the frequencies of the bandgap edges. The study in this paper is relevant to the optimal design of the bandgaps in light porous materials.

Publisher

ASME International

Subject

General Engineering

Reference35 articles.

1. Acoustic Band Structure of Periodic Elastic Composites;Phys. Rev. Lett.,1993

2. Perspectives in Mechanics of Heterogeneous Solids;Acta Mech. Solida Sin.,2011

3. Extreme Acoustic Band Gaps Obtained Under High Symmetry in 2D Phononic Crystals;J. Phys. D: Appl. Phys.,2006

4. Effects of Material Parameters on Elastic Band Gaps of Two-Dimensional Solid Phononic Crystals;J. Appl. Phys.,2009

5. Influence of Anisotropy on Band Gaps of 2D Phononic Crystals;Acta Mech. Solida Sin.,2010

Cited by 43 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3