A Globally Stable Adaptive Controller for the Human Shank Dynamics

Author:

Ortega R.1,Bobstov A.2,Queiroz M. de3,Yang R.4,Nikolaev N.5

Affiliation:

1. Department of Académico de Sistemas Digitales, ITAM , Ciudad de México 01080, México

2. Department of Control Systems & Robotics, ITMO University, Saint-Petersburg 197101, Russia; School of Automation, Hangzhou Dianzi University , Zhejiang Province 310005, China

3. Department of Mechanical & Industrial Eng., Louisiana State University , Baton Rouge, LA 70803

4. Iontra Inc. , Centennial, CO 80222

5. Department of Control Systems & Robotics, ITMO University , Saint-Petersburg 197101, Russia

Abstract

Abstract In this paper, we propose a globally stable adaptive controller for the human shank motion tracking problem that appears in neuromuscular electrical stimulation systems. The control problem is complicated by the fact that the mathematical model of the human shank dynamics is nonlinear and the parameters enter in a nonlinear and nonseparable form. To solve the problem, we first derive a nonlinearly parameterized regressor equation (NLPRE) that is used with a new parameter estimator specifically tailored for this NLPRE. This estimator is then combined with a classical feedback linearizing controller to ensure the tracking objective is globally achieved. A further contribution of the paper is the proof that parameter convergence, and consequent global tracking, is guaranteed with an extremely weak interval excitation requirement. A simulation study comparing the proposed adaptive controller with existing ones in the literature shows comparable human shank tracking performance but with fewer parameter estimates and without requiring knowledge of bounds for the unknown parameters.

Funder

National Natural Science Foundation of China

Publisher

ASME International

Subject

Computer Science Applications,Mechanical Engineering,Instrumentation,Information Systems,Control and Systems Engineering

Reference16 articles.

1. Isometric Torque Control for Neuromuscular Electrical Stimulation With Time-Varying Input Delay;IEEE Trans. Control Syst. Technol.,2016

2. Adaptive Neural Network Control of Cyclic Movements Using Functional Neuromuscular Stimulation;IEEE Trans. Neural Syst. Rehabil. Eng.,2000

3. Closed-Loop Neural Network-Based NMES Control for Human Limb Tracking;IEEE Trans. Control Syst. Technol.,2012

4. Neural Network-Based Control of Neuromuscular Electrical Stimulation With Input Saturation,2018

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3