An Energy-Based General Method for the Optimum Synthesis of Mechanisms

Author:

Avile´s R.1,Navalpotro S.1,Amezua E.1,Herna´ndez A.1

Affiliation:

1. Mechanical Engineering Department, Basque Country University, Escuela Superior de Ingenieros, Alameda de Urquijo, s/n 48013-Bilbao, Spain

Abstract

The aim of the present paper is to set forth a method for the optimum synthesis of planar mechanisms. The method in question can be applied in the case of any mechanism and kinematic synthesis (function, path generation, rigid-body guidance, or combination of these). The mechanisms are discretized with bar-finite elements that facilitate the computation of the geometric matrix, which is a stiffness matrix. The error function is based on the elastic energy accumulated by the mechanism when it is compelled to fulfill exactly the synthesis data. Thus during the iterative process the elements of the mechanism may be considered deformable. The energy computation for each synthesis datum requires the solution of the nonlinear equilibrium position. This problem is solved with the help of the geometric matrix and the force vector of the deformed system. The minimization of the error function is based on Newton’s method, with a semianalytic approach. Analytic and finite-difference concepts are used together in the calculation of the gradient vector and of the second-derivative matrix. The method has proved very stable for a wide range of step sizes. There is convergence to a minimum even when the start mechanism is far from a solution. Examples with different mechanisms and syntheses are also provided.

Publisher

ASME International

Subject

Computer Graphics and Computer-Aided Design,Computer Science Applications,Mechanical Engineering,Mechanics of Materials

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3