The Effect of Dissolving Gases or Solids in Water Droplets Boiling on a Hot Surface

Author:

Cui Qiang1,Chandra Sanjeev1,McCahan Susan1

Affiliation:

1. Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario M5S 3G8, Canada

Abstract

We conducted experiments on the effect of dissolving either a gas (carbon dioxide) or a solid salt (sodium carbonate or sodium bicarbonate) in water droplets boiling on a hot stainless steel surface. Substrate temperatures were varied from 100°C to 300°C. We recorded the boiling of droplets with a video system, and photographed droplet impact using short-duration flash photography. At surface temperatures that were too low to initiate nucleate boiling, dissolved salts were found to reduce the evaporation rate since they lower the vapor pressure of water. Dissolved gas had the opposite effect: it came out of solution and formed bubbles in the liquid, enhancing evaporation. In the nucleate boiling regime dissolved carbon dioxide enhanced heat transfer by a small amount. However, sodium carbonate prevented coalescence of vapor bubbles and produced foaming in the droplet, greatly enhancing heat transfer and reducing the droplet lifetime to approximately half that of a pure water drop. Sodium bicarbonate, which decomposes to give carbon dioxide and sodium carbonate when heated, produced an even larger enhancement of heat transfer. When the surface temperature was raised above the Leidenfrost temperature of water, droplets went into film boiling and bounced off the surface following impact. Dissolved carbon dioxide was found to suppress heterogeneous bubble formation in the droplet during impact. However, dissolved salts promoted bubble formation and led to droplet break-up during impact.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 57 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3