The Effects of Turbulence and Stator/Rotor Interactions on Turbine Heat Transfer: Part II—Effects of Reynolds Number and Incidence

Author:

Blair M. F.1,Dring R. P.2,Joslyn H. D.1

Affiliation:

1. United Technologies Research Center, East Hartford, CT 06108

2. Gas Turbine Technology, United Technologies Research Center, East Hartford, CT 06108

Abstract

Part I of this paper presents airfoil heat transfer data obtained in a rotating turbine model at its design rotor incidence. This portion of the paper presents heat transfer data obtained in the same model for various combinations of Reynolds number and inlet turbulence and for a very wide range of rotor incidence. On the suction surfaces of the first-stage airfoils the locations and lengths of transition were influenced by both the inlet turbulence level and the Reynolds number. In addition it was demonstrated that on the first-stage pressure surfaces combinations of high Reynolds number and high turbulence can produce heat transfer rates well in excess of two-dimensional turbulent flow. Rotor heat transfer distributions indicate that for relatively small deviations from the design incidence, local changes to the heat transfer distributions were produced on both pressure and suction sides near the stagnation region. For extremely large negative incidence the flow was completely separated from the rotor pressure surface, producing very high local heat transfer.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3