Tribological Performance of Polymer Composite Coatings Modified With La2O3 and MoS2 Nanoparticles

Author:

Zhang Dongya1,Li Zhongwei1,Gao Feng1,Wei Xian2,Ni Yuquan1

Affiliation:

1. Key Laboratory of Manufacturing Equipment of the Shaanxi Province, School of Mechanical and Precision Instrument Engineering, Xi’an University of Technology, Xi’an, Shaanxi 710048, China

2. School of Automobile and Traffic Engineering, Panzhihua University, PanZhiHua, Sichuan 61700, China

Abstract

Abstract In this study, composite coatings of polyvinylidene fluoride (PVDF) and epoxy resin deposited with La2O3 and MoS2 nanoparticles on the surface of a Babbitt alloy have been studied in order to improve its tribological performance. A pin-on-disc tribometer was used to evaluate the tribological properties of the Babbitt alloys with and without the composite coatings. The results showed that compared with the polymer-La2O3 composite coating, the polymer-MoS2 composite coating was more effective in reducing the friction coefficient and the wear rate of the Babbitt substrate under both dry and boundary lubrication conditions compared with the polymer-La2O3 composite coating. However, the wear rate of the Babbitt alloy with the polymer-La2O3 composite coating was lower than that of the alloy with the polymer-MoS2 composite coating. The wear scratches were analyzed using a scanning electron microscope (SEM). The worn surface of the polymer-La2O3 coating was much smoother and more continuous than that of the polymer-MoS2 coating, meanwhile transfer films were respectively detected on the pin surfaces. The addition of nanoparticles can reduce the wear rate and friction coefficient of polymer composite coating by forming a transfer film. Hence, the polymer composite coating can protect the Babbitt substrate.

Funder

Key Laboratory Project Department of Education of Shaanxi Province

Key Research and Development Project of Shaanxi Province

Key Research and Development Project of Sichuan Science and Technology Department

National Natural Science Foundation of China

Publisher

ASME International

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering,Mechanics of Materials

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3