Effects of Typical Machining Errors on the Nonlinear Dynamic Characteristics of Rod-Fastened Rotor Bearing System

Author:

Liu Yi12,Liu Heng12,Wang Nanshan12

Affiliation:

1. Key Laboratory of Education Ministry for Modern Design and Rotor-Bearing System;

2. State Key Lab for Strength and Vibration of Mechanical Structures, Xi'an Jiaotong University, No. 28, West Xianning Road, Xi'an, Shaanxi, China e-mail:

Abstract

The effects of typical machining errors on the dynamic features of rod-fastened rotor bearing system (RBS) are studied in this paper. Three micron-sized machining errors are considered in a three-dimensional (3D) rod-fastened model. The static effects of machining errors are investigated by applying finite element method. Results demonstrate that machining errors not only bring about mass eccentricity but also cause obvious rotor bending due to large pretightening force. Then, nonlinear dynamic features such as stability and bifurcation are analyzed by using target-shooting technique, track-following method, and Floquet theory. Analysis data indicate that rotor bending originated from machining errors reduces the system stability evidently. It is also observed that the vibration value continues to go up after critical speed as rotating speed increases. It is a particular property compared with integral rotor. It explains the reason why the machining precision of rod-fastened rotor is much higher than that of the corresponding integral rotor to some extent. Moreover, differences between machining errors are compared and the results show that the machining precision of axial assembly interfaces should be paid more attention in the rod-fastened rotor design.

Publisher

ASME International

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3