Impact of Immersion Cooling on Thermomechanical Properties of Halogen-Free Substrate Core

Author:

Bansode Pratik1,Suthar Rohit12,Bhandari Rabin1,Lakshminarayana Akshay1,Eda Naga Tejesh1,Gupta Gautam1,Simon Vibin12,Modi Himanshu12,Nair Vivek12,Shahi Pardeep1,Saini Satyam1,Sivaraju Krishna Bhavana1,Agonafer Dereje1

Affiliation:

1. Mechanical and Aerospace Engineering Department, University of Texas at Arlington , 500 West First Street, Arlington, TX 76010

2. The University of Texas at Arlington

Abstract

Abstract The data center's server power density and heat generation have increased exponentially because of the recent, unparalleled rise in the processing and storing of massive amounts of data on a regular basis. One-third of the overall energy used in conventional air-cooled data centers is directed toward cooling information technology equipment (ITE). The traditional air-cooled data centers must have low air supply temperatures and high air flow rates to support high-performance servers, rendering air cooling inefficient and compelling data center operators to use alternative cooling technology. Due to the direct interaction of dielectric fluids with all the components in the server, single-phase liquid immersion cooling addresses mentioned problems by offering a significantly greater thermal mass and a high percentage of heat dissipation. Single-phase liquid immersion cooling is a viable option for hyperscale, edge, and modular data center applications because, unlike direct-to-chip liquid cooling, it does not call for a complex liquid distribution system configuration and the dielectric liquid can make direct contact with all server components. Immersion cooling is superior to conventional air-cooling technology in terms of thermal energy management; however, there have been very few studies on the reliability of such cooling technology. A detailed assessment of the material compatibility of different electronic packaging materials for immersion cooling was required to comprehend their failure modes and reliability. For the mechanical design of electronics, the modulus and glass transition temperature (Tg) are essential material characteristics. The substrate is a crucial element of an electronic package that has a significant impact on the reliability and failure mechanisms of electronics at both the package and the board level. As per Open Compute Project (OCP) design guidelines for immersion-cooled IT equipment, the traditional material compatibility tests from standards like ASTM 3455 can be used with certain appropriate adjustments. The primary focus of this research is to address two challenges: The first part is to understand the impact of thermal aging on the thermomechanical properties of the halogen-free substrate core in the single-phase immersion cooling. Another goal of the study is to comprehend how thermal aging affects the thermomechanical characteristics of the substrate core in the air. In this research, the substrate core is aged in synthetic hydrocarbon fluid (EC110), polyalphaolefin 6 (PAO 6), and ambient air for 720 h each at two different temperatures: 85 °C and 125 °C, and the complex modulus and the glass transition temperature before and after aging are calculated and compared.

Publisher

ASME International

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3