Numerical Analysis of Unsteady Exhaust Gas Flow and Its Application for Lambda Control Improvement
Author:
Yoshizawa K.1, Mori K.1, Arai K.1, Iiyama A.1
Affiliation:
1. Powertrain Research Laboratory, Nissan Research Center, Nissan Motor Co., Ltd., 1 Natsushima-cho, Yokosuka 237-8523, Japan
Abstract
A multidimensional computational fluid dynamics (CFD) tool has been applied to analyze the exhaust system of a gasoline engine. Since gas flow in the exhaust manifold is affected by exhaust pulsations, prediction methods based on steady flow are not able to predict gas flow precisely enough. Therefore, a new multidimensional calculation method, called pulsation flow calculation, has been developed. A one-dimensional gas exchange simulation and a three-dimensional exhaust gas flow calculation are combined to simulate gas flow pulsations caused by the gas exchange process. Predicted gas flow in the exhaust manifold agreed with the experimental data. With the aim of reducing emissions, the pulsation flow calculation method has been applied to improve lambda feedback control using an oxygen sensor. The factors governing sensor sensitivity to the exhaust gas from each cylinder were clarified. The possibility of selecting the oxygen sensor location in the exhaust manifold on the basis of calculations was proved. The effect of an exhaust manifold with equal-length cylinder runners on achieving uniform sensor sensitivities was made clear. In addition, a new lambda feedback control method for an exhaust manifold with different-length cylinder runners is proposed.
Publisher
ASME International
Subject
Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering
Reference15 articles.
1. Aita, S., Tabbal, A., Munck, G., Fujiwara, K., Hongoh, H., Tamura, E., and Obana, S., 1990, “Numerical Simulation of Port-Valve-Cylinder Flow in Reciprocating Engines,” SAE Paper No. 900820. 2. Godrie, P., and Zellat, M., 1994, “Simulation of Flow Field Generated by Intake Port-Valve-Cylinder Configurations—Comparison with Measurements and Applications,” SAE Paper No. 940521. 3. Naitoh, K., Fujii, H., Urushihara, T., Takagi, Y., and Kuwahara, K., 1990, “Numerical Simulation of the Detailed Flow in Engine Ports and Cylinder,” SAE Paper No. 900256. 4. Trigui, N., Affes, H., and Kent, J. C., 1994, “Use of Experimentally Measured In-Cylinder Flow Field at IVC as Initial Conditions for CFD Simulation of Compression Stroke in I.C. Engine-A Feasibility Study,” SAE Paper No. 940280. 5. Khalighi, B., El Tahry, S. H., Haworth, D. C., and Huebler, M. S., 1995, “Computation and Measurement of Flow and Combustion in a Four-Valve Engine with Intake Variations,” SAE Paper No. 950287.
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|