Numerical Analysis of Unsteady Exhaust Gas Flow and Its Application for Lambda Control Improvement

Author:

Yoshizawa K.1,Mori K.1,Arai K.1,Iiyama A.1

Affiliation:

1. Powertrain Research Laboratory, Nissan Research Center, Nissan Motor Co., Ltd., 1 Natsushima-cho, Yokosuka 237-8523, Japan

Abstract

A multidimensional computational fluid dynamics (CFD) tool has been applied to analyze the exhaust system of a gasoline engine. Since gas flow in the exhaust manifold is affected by exhaust pulsations, prediction methods based on steady flow are not able to predict gas flow precisely enough. Therefore, a new multidimensional calculation method, called pulsation flow calculation, has been developed. A one-dimensional gas exchange simulation and a three-dimensional exhaust gas flow calculation are combined to simulate gas flow pulsations caused by the gas exchange process. Predicted gas flow in the exhaust manifold agreed with the experimental data. With the aim of reducing emissions, the pulsation flow calculation method has been applied to improve lambda feedback control using an oxygen sensor. The factors governing sensor sensitivity to the exhaust gas from each cylinder were clarified. The possibility of selecting the oxygen sensor location in the exhaust manifold on the basis of calculations was proved. The effect of an exhaust manifold with equal-length cylinder runners on achieving uniform sensor sensitivities was made clear. In addition, a new lambda feedback control method for an exhaust manifold with different-length cylinder runners is proposed.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3