Tool Temperatures in Interrupted Metal Cutting

Author:

Stephenson D. A.1,Ali A.2

Affiliation:

1. Engineering Mechanics Department, General Motors Research Laboratories, Warren, MI 48090-9057

2. Advanced Manufacturing Engineering, Chevrolet-Pointiac-GM of Canada, Warren, MI 48090

Abstract

This paper summarizes the results of theoretical and experimental studies of tool temperatures in interrupted cutting. In the theoretical study, the temperature in a semi-infinite rectangular corner heated by a time-varying heat flux with various spatial distributions is used to investigate the general nature of the tool temperature distribution. The results of this analysis are compared with infrared and tool-chip thermocouple cutting temperature measurements from interrupted end turning tests on 2024 aluminum and gray cast iron at speeds up to 18 m/s. The results show that temperatures are generally lower in interrupted cutting than in continuous cutting under the same conditions. Temperatures depend primarily on the length of cutting cycles and secondarily on the length of cooling intervals between cycles. For short cutting cycles the peak and average surface temperatures are relatively low, but they increase rapidly as the cutting cycle is lengthened and approach steady-state values for long cycles. Temperatures increase for very short cooling intervals, since in this case heat does not disperse between heating cycles, but for moderate and large values varying the cooling interval has little effect on temperatures. The theoretical analysis reproduces the qualitative trends but underestimates temperatures for short cutting cycles. The accuracy of the analysis could be improved by using a transient model to calculate the amount of heat entering the tool from the tool-chip contact.

Publisher

ASME International

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3