Affiliation:
1. Department of Mechanical Engineering, National Chung Cheng University, No. 168 University Road, Min-Hsiung, Chia-Yi, Taiwan 621, R.O.C.
Abstract
The fundamental design of spiral bevel and hypoid gears is usually based on a local synthesis and a tooth contact analysis of the gear drive. Recently, however, several flank modification methodologies have been developed to reduce running noise and avoid edge contact in gear making, including modulation of tooth surfaces under predesigned transmission errors. This paper proposes such a flank modification methodology for face-hobbing spiral bevel and hypoid gears based on the ease-off topography of the gear drive. First, the established mathematical model of a universal face-hobbing hypoid gear generator is applied to investigate the ease-off deviations of the design parameters—including cutter parameters, machine settings, and the polynomial coefficients of the auxiliary flank modification motion. Subsequently, linear regression is used to modify the tooth flanks of a gear pair to approximate the optimum ease-off topography suggested by experience. The proposed method is then illustrated using a numerical example of a face-hobbing hypoid gear pair from Oerlikon’s Spiroflex cutting system. This proposed flank modification methodology can be used as a basis for developing a general technique of flank modification for similar types of gears.
Subject
Computer Graphics and Computer-Aided Design,Computer Science Applications,Mechanical Engineering,Mechanics of Materials
Cited by
99 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献