Analysis of a Vortexing Circulating Fluidized Bed for Process Intensification Via High-G Flows

Author:

Bobek Michael12,Rowan Steve12,Yang Jingsi12,Weber Justin3,Shafer Frank3,Breault Ronald W.3

Affiliation:

1. National Energy Technology Laboratory, Morgantown, WV 26507;

2. Department of Thermal Science, Oak Ridge Institute for Science and Education, Morgantown, WV 26507

3. National Energy Technology Laboratory, Morgantown, WV 26507

Abstract

Fluidized beds are used in many industries where gas–solid reactions are present for their favorable characteristics of good solids mixing, high heat, and mass transfer rates, and large throughputs. In an attempt to increase throughput, reduce reactor footprints, and reduce costs, process intensification by unconventional reactor designs is being pursued. Specifically, this work focuses on the development of high-G reactors where the particles are experiencing a centripetal force typically on the order of ten times the force of gravity. This operating regime provides intensified gas–solids contact providing higher mass transfer, heat transfer, and gas throughput than a typical fluidized bed. This work focuses analysis of a cold flow vortexing circulating fluidized bed (CFB). Through mapping the pressure distributions in the riser, insights into the behavior of the system were made and compared to CPFD Barracuda computational fluid dynamic models. The simulation results outlined the working envelope of the system and provided a baseline to compare the experimental results. The experimental pressure data determined angular velocities of the gas in the range of 30–40 m/s, with corresponding particle velocities around 15 m/s.

Publisher

ASME International

Subject

Geochemistry and Petrology,Mechanical Engineering,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3