Improved Point-Matching Techniques Applied to Multi-Region Heat Transfer Problems

Author:

France D. M.1,Ginsberg T.1

Affiliation:

1. Engineering and Technology Div., Argonne National Laboratory, Argonne, Ill.

Abstract

An analytical method is presented which extends the series solution of the Laplace and Poisson equations with irregular boundary conditions to multi-cell problems. The method employs a least-squares technique of satisfying the boundary conditions on the irregular boundaries and eliminates the use of a finite number of boundary points to satisfy these conditions. The technique is applied to the calculation of the fully developed temperature distribution of a constant-velocity fluid flowing parallel to a semi-infinite square array of circular nuclear fuel rods. The bounding wall of the array is located such that the flow area of the cell associated with the rod adjacent to the wall is different from the (equal) areas of all the other cells. The series solution is compared to a finite-difference solution for a sample case of two cells. The results for the semi-infinite array indicate that while the array temperature distribution is markedly affected by the difference in flow areas, the Nusselt numbers of the rods are relatively unaffected. Typical results are presented for a pitch-to-diameter of 1.2; the flow area of the first cell is 3.67 percent greater than the area of the other cells.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A review of least-squares methods for solving partial differential equations;International Journal for Numerical Methods in Engineering;1976

2. Heat transfer—A review of 1972 literature;International Journal of Heat and Mass Transfer;1973-11

3. Comparison of single and multicell heat transfer analyses near nuclear reactor assembly walls;Nuclear Engineering and Design;1972-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3