Characterization of the Effect of Exhaust Back Pressure on Crank Angle-Resolved Exhaust Exergy in a Diesel Engine

Author:

Mahabadipour H.1,Partridge K. R.1,Jha P. R.1,Srinivasan K. K.1,Krishnan S. R.1

Affiliation:

1. Department of Mechanical Engineering, The University of Alabama, Tuscaloosa, AL 35487 e-mail:

Abstract

To enable efficient exhaust waste energy recovery (WER), it is important to characterize the exergy available in engine exhaust flows. In a recent article (Mahabadipour et al., 2018, Appl. Energy, 216, pp. 31–44), the authors introduced a new methodology for quantifying crank angle-resolved exhaust exergy (including its thermal and mechanical components) for the two exhaust phases, viz., the “blowdown” phase and the “displacement” phase. The present work combines experimental measurements with GT-SUITE simulations to investigate the effect of exhaust back-pressure (Pb) on crank angle-resolved exhaust exergy in a single-cylinder research engine (SCRE). To this end, Pb values of 1, 1.4, and 1.8 bar are considered for conventional diesel combustion on the SCRE. Furthermore, the effect of boost pressure (Pin) between 1.2 and 2.4 bar on the thermal and mechanical components of exhaust exergy is reported at different Pb. The exergy available in the blowdown and the displacement phases of the exhaust process is also quantified. Regardless of Pin, with increasing Pb, the cumulative exergy percentage in the blowdown phase reduced uniformly. For example, at Pin = 1.5 bar and 1500 rpm engine speed, the cumulative exergy percentage in the blowdown phase decreased from 34% to 17% when Pb increased from 1 bar to 1.8 bar. The percentage of fuel exergy available as exhaust exergy was quantified. For instance, this normalized cumulative exergy in the exhaust increased from 10% to 21% when Pb increased from 1 bar to 1.8 bar at 1200 rpm. Finally, although the present work focused on exhaust exergy results for diesel combustion in the SCRE, the overall methodology can be easily adopted to study exhaust exergy flows in different engines and different combustion modes to enable efficient exhaust WER.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3