New Developments for the Description of Oil Leakages by Advective Migration From Submarine Pipelines

Author:

Baptista Renan Martins1,Machado Ricardo Antonio Francisco2,Quadri Marintho Bastos2,Bolzan Ariovaldo2,Nogueira André Lourenço2,Lopes Toni Jefferson2

Affiliation:

1. Petrobras R & D Center, Cidade Universitária, Ilha do Fundão, Quadra 7, 21949-900 Rio de Janeiro, Brazil

2. Department of Chemical Engineering, Federal University of Santa Catarina, Caixa Postal 476, Trindade Florianópolis, 88040-000 Santa Catarina, Brazil

Abstract

The significant growth in offshore operations increases the risk of a pipeline rupture, even considering the high standards of safety involved. Throughout a submarine leakage, four different amounts of oil may be accounted. The first one is the oil volume released until the leakage detection. The second one is the volume leaked throughout mitigation initiatives (e.g., pump shutdown and valve closure). The third parcel is the amount released by gravitational flow. Finally, the fourth and last amount of oil is released due to the water-oil entrainment, generally known as advective migration. Normally, a considerable amount of oil is released in this step. It begins just after the internal pipeline pressure becomes equal to the external one. The present work continues to introduce a mathematical alternative approach, based on the theories of perturbation and unstable immiscible displacement, to accurately estimate the leakage kinetics and the amount of oil released by the advective migration phenomenon. Situations considering different hole sizes and thicknesses were tested experimentally and through simulations. Additional experiments were accomplished using smooth and rough edge surfaces, besides different slopes (using the horizontal plane as reference). Those experiments permitted a preliminary evaluation of the importance of these factors. The results obtained with the model showed good agreement with the experimental data in many situations considered.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Safety, Risk, Reliability and Quality

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3