Emissions of a Wet Premixed Flame of Natural Gas and a Mixture With Hydrogen at High Pressure

Author:

Stathopoulos P.1,Kuhn P.2,Wendler J.2,Tanneberger T.2,Terhaar S.2,Paschereit C. O.2,Schmalhofer C.3,Griebel P.3,Aigner M.3

Affiliation:

1. Chair of Fluid Dynamics Hermann-Föttinger-Institut, Technische Universität Berlin, Müller-Breslau-Str. 8, Berlin 10623, Germany e-mail:

2. Chair of Fluid Dynamics Hermann-Föttinger-Institut, Technische Universität Berlin, Müller-Breslau-Str. 8, Berlin 10623, Germany

3. German Aerospace Center (DLR), Institute of Combustion Technology, Pfaffenwaldring 38-40, Stuttgart 70569, Germany

Abstract

It is generally accepted that combustion of hydrogen and natural gas mixtures will become more prevalent in the near future, to allow for a further penetration of renewables in the European power generation system. The current work aims at the demonstration of the advantages of steam dilution, when highly reactive combustible mixtures are used in a swirl-stabilized combustor. To this end, high-pressure experiments have been conducted with a generic swirl-stabilized combustor featuring axial air injection to increase flashback safety. The experiments have been conducted with two fuel mixtures, at various pressure levels up to 9 bar and at four levels of steam dilution up to 25% steam-to-air mass flow ratio. Natural gas has been used as a reference fuel, whereas a mixture of natural gas and hydrogen (10% hydrogen by mass) represented an upper limit of hydrogen concentration in a natural gas network with hydrogen enrichment. The results of the emissions measurements are presented along with a reactor network model. The latter is applied as a means to qualitatively understand the chemical processes responsible for the observed emissions and their trends with increasing pressure and steam injection.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Reference34 articles.

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3