Ag–Cu–Ti Braze Materials for Sealing SOFCs

Author:

Kobsiriphat Worawarit1,Barnett Scott1

Affiliation:

1. Northwestern University, 2220 Campus Drive, Evanston, IL 60208

Abstract

Two Ag–Cu–Ti brazing alloy compositions were studied as gas seals for solid oxide fuel cells (SOFCs). Yttria-stabilized zirconia pellets were bonded using Ag–35.25Cu–1.75Ti (Cusil-ABA) or Ag–20.1Cu–1.0Ti (average composition; Ag-Cusil). Both as-brazed filler metals contained metallic Ag and Cu phases, along with continuous titanium oxide layers at the filler metal-zirconia interfaces. The brazed joints were then aged at 700°C for up to 100h in air or while separating H2 and air atmospheres. After annealing in air for 100h at 700°C, degradation in microstructure and hermeticity was more pronounced in Cusil-ABA. However, in H2-air atmosphere, Cusil-ABA performed better than Ag-Cusil. Ag-Cusil aged in H2 air delaminated from zirconia and its microstructure showed large interconnected pores in Ag-rich regions. The results were confirmed by single-cell tests using each filler metal as a gas seal. Observations of the post-test Cusil-ABA microstructure revealed little degradation. These results indicate that Cusil-ABA is better suited than Ag-Cusil as a SOFC gas seal.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3