An Inverse Problem for Determination of Transient Surface Temperature From Piezoelectric Sensor Measurement

Author:

Ashida Fumihiro1,Tauchert T. R.2

Affiliation:

1. Department of Electronics and Control Engineering Tsuyama National College of Technology, Tsuyama, Okayama 708, Japan

2. Department of Mechanical Engineering, University of Kentucky, Lexington, KY 40506-0046

Abstract

The time-varying ambient temperature on the face of a piezoelectric disk is inferred from a knowledge of the thermally induced electric potential difference across the disk thickness. The temperature-sensing disk has a circular planform, possesses hexagonal material symmetry properties, and is constrained by a rigid, thermally insulated, electrically charge-free ring. A potential function approach, together with Laplace transforms, is employed to solve the inverse problem for a particular form of electric potential difference. Also presented is a finite difference formulation which does not require specification of an analytical form for the potential difference. Numerical results are given for the predicted transient ambient temperatures corresponding to various combinations of disk thickness-to-radius ratios and surface heat transfer coefficients. Through-thickness distributions of temperature, stresses, and electric field intensities are shown, and a comparison of the exact and finite difference results is provided.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3