Building Vibration Control by Active Mass Damper With Delayed Acceleration Feedback: Multi-Objective Optimal Design and Experimental Validation

Author:

Zheng Yuan-Guang1,Huang Jing-Wen2,Sun Ya-Hui3,Sun Jian-Qiao4

Affiliation:

1. School of Mathematics and Information Science, Nanchang Hangkong University, Nanchang 330063, China

2. College of Information Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China

3. State Key Laboratory for Strength and Vibration, Xian Jiaotong University, Xian 710049, China

4. School of Engineering, University of California, Merced, Merced, CA 95343 e-mail:

Abstract

The building structural vibration control by an active mass damper (AMD) with delayed acceleration feedback is studied. The control is designed with a multi-objective optimal approach. The stable region in a parameter space of the control gain and time delay is obtained by using the method of stability switch and the numerical code of NDDEBIFTOOL. The control objectives include the setting time, total power consumption, peak time, and the maximum power. The multi-objective optimization problem (MOP) for the control design is solved with the simple cell mapping (SCM) method. The Pareto set and Pareto front are found to consist of two clusters. The first cluster has negative feedback gains, i.e., the positive acceleration feedback. We have shown that a proper time delay can enhance the vibration suppression with controls from the first cluster. The second cluster has positive feedback gains and is located in the region which is sensitive to time delay. A small time delay will deteriorate the control performance in this cluster. Numerical simulations and experiments are carried out to demonstrate the analytical findings.

Funder

National Natural Science Foundation of China

Publisher

ASME International

Subject

General Engineering

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3