Performance of Diamond and Silicon Carbide Wheels on Grinding of Bioceramic Material Under Minimum Quantity Lubrication Condition

Author:

Suya Prem Anand P.1,Arunachalam N.2,Vijayaraghavan L.3

Affiliation:

1. Department of Mechanical Engineering, IIT Madras, Chennai 600036, India e-mail:

2. Assistant Professor Department of Mechanical Engineering, IIT Madras, Chennai 600036, India e-mail:

3. Professor Department of Mechanical Engineering, IIT Madras, Chennai 600036, India e-mail:

Abstract

Advanced ceramic materials like sintered and presintered zirconia are frequently used in biomedical applications, where minimum quantity lubrication (MQL) assisted grinding is required to achieve a good surface finish instead of conventional flood coolant. However, insufficient cooling and wheel clogging are the major problems that exist in the MQL grinding process, which depends upon the type of work piece material and the grinding wheel being used. The present study is to determine the performance of the grinding wheels on presintered zirconia under MQL conditions in terms of grinding forces, specific energy, surface integrity, and wheel wear. Experiments are conducted with two different types of grinding wheels as silicon carbide (SiC) and diamond grinding wheels under the same condition. The results indicated that the diamond wheel provided a better surface finish and reduced tangential force under MQL condition, compared to the conventional SIC wheel. This was due to the reduction of wheel loading in the diamond grinding wheel. The specific energy of diamond grinding wheel was reduced with higher material removal rate compared to the conventional SiC wheel. The ground surfaces generated by the diamond grinding wheel showed fine grinding marks with better surface finish. The percentage of G-ratio calculated for the diamond wheel was higher than the SiC wheel by 77%. This was due to the sliding of the grains and less wheel loading in the diamond wheel. The cost difference between the corresponding wheels was discussed to improve the productivity of the grinding process.

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3